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There are various rope constructions that differ chiefly in the
method of interweaving and in the cross-section profile of the
wire from which the rope is twisted.! This variety is caused
by the different rope service conditions. Round steel single-
weave rope and double-weave rope have been most widely used.
In single-weave rope, the fibres are arranged in several layers
in helical lines about a central rectilinear fibre. Double-weave
rope is woven from strands; an individual strand comprises a
single-weave rope whose central fibre is arranged in a helical
line.

Two principal approaches to constructing an elementary the-
ory of single-weave rope are known (below, single-weave rope will
be referred to simply as “rope”). One of these approaches!? relies
on the representation of the rope as a discrete system of curvi-
linear rods and uses methods of structural mechanics. The second
approach is based on the equations of an elastic continuum with
curvilinear anisotropy.3

With any of these approaches, the relation between the integral
characteristics of the stress—strain state — the longitudinal force P,
the torque M;, the longitudinal strain & and the relative twisting
angle ¢ - has the form

dye+dpg = P, dpe+dpe =M, (0.1)

From this it follows that:
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(a) Inthe general case, the longitudinal force, in addition to the lon-
gitudinal strain, generates torsion, and the torque, in addition
to twisting, generates longitudinal strain;

(b) The stiffness in tension, B, and the stiffness in torsion, B,
depend considerably on the way in which the ends of the
rope are fastened; for example, if the ends of the rope are
fastened such that ¢ =0, then B,=dq; if M; =0—B; =dy; —
d%z /daa.

Unlike rectilinear rods, where all known approaches to con-
structing their elementary theory (the method of hypotheses, Saint
Venant'’s theory, and asymptotic methods of elasticity theory) give
the same result Br = dy; = ES, where E is Young’s modulus and S is the
cross-section area, in the theory of ropes different approaches lead
to different analytical expressions for the elements of the stiffness
rigidity matrix dj;.

To illustrate the variety of available formulae, we will present
expressions for dy; according to the data of different authors.

By the methods of elasticity theory, Gegauff (1907)3 obtained

dy, = ESycos’a (0.2)

Using methods of structural mechanics, Dinik (1957)% and
Glushko (1996)! obtained

dy, = E50c0s4oc (0.3)
n

dy =Y, (ESicos3(xi+ rszIisin4(xicos30ti+r,TZGIpisinsocicos2ai)
i=1 (0.4)

where S is the effective cross-sectional area of the rope, i.e., the
combined cross-section area of the individual fibres, a is the angle
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between the tangent to the outer fibre and the axis of the rope, n is
the number of fibres in the rope, G is the shear modulus, S; is the
cross-section area, I; is the moment of inertia of the section about
the axis lying in the cross-section, Ip; is the polar moment of inertia
of the i th fibre, r; is the distance between the axis of the rope and
the fibre, and o; is the angle of inclination of the fibre to the rope
axis.

By the method of the theory of elasticity of a helically anisotropic
incompressible body, Musalimov and Mokryak (1983)* obtained

dy, = ESy®@(o)
3 9 2 2
d(a) = 1+§a+§bcos o+ (96 + 3a)ctg"alncosa,
_ 1-v __1 2G
a=l1-37%5 b=35"%

where v is Poisson’s ratio (see the remarks below concerning for-
mulae (1.2)).

In the present study, two new approaches are used to determine
the stress-strain state of a rope and its stiffness dj;.

1. Principal relations of elasticity theory in a helical
coordinate system

We will explain the principal ideas behind the first approach to
constructing an elementary theory of a rope, relying on the theory
of fibrous composites and Saint Venant’s solution®~7 for a cylinder
with helical anisotropy. Suppose that, on a cylindrical surface of
small radius, layers of elastic fibres are wound along helical lines,
so that the pitch h of the helical line and the twist T=27rh remain
constant. At the same time as the winding, the layers are coated
with a polymer binder. After polymerization of the binding lay-
ers, we obtain a cylinder of fibrous composite. Let E; and v; be
Young’s modulus and Poisson’s ratio of the fibres, and let E; and v,
be Young’s modulus and Poisson’s ratio of the filler.

To describe the integral elastic properties of such a cylinder, we
will proceed as follows.

At the geometric centre of gravity of one of the ends of the cylin-
der we will place the origin of a Cartesian system of coordinates x1,
X2, x3; we will call this the principal system of coordinates. We will
introduce a helical system of coordinates r, 6, z connected to the
principal system of coordinates by the relations

x| = rcos(8+1z), x, = rsin(0+1z) (11)

which, when r=const and 0 = const, are the parametric equations
of a helical line.

We will represent the radius vector of points of the helical line
in the form

' '
R = re, +ze,

Here
e} = e, = i;cos(0 +1z) +i,sin(0 + 12),
e, = e, = —i;sin(0 + tz) +i,cos(0 +12)

where i; and i, are the unit vectors of the principal system of coor-
dinates. We will connect with the helical line the basis (Frenet
reference frame) e; =n, e, =b, e3 =t, that is, the unit vectors of the
principal normal, the binormal and the tangent respectively. The
orthogonal matrix of the transition from the basis e; to the basis €’;

has the form

-10 0 R o
A= O—gxg3g=(1+x2),x=r‘t

0 xg g (12)

The material of the cylinder obtained by the method described
above is inhomogeneous, but, for a sufficiently large number of
wound layers, by averaging theory,8 it can at any point of the
cylinder be considered as locally transversely isotropic; here, the
principal axis of symmetry is directed along the vector e; =t.

To describe the elastic properties of the cylinder, we will use the
vector matrix form of the generalized Hooke’s law®

T T
6 =Ce; e=][e,..,e]l, 6=[0,..,0], C= (cij), cji = ¢y
Op = O k=123, 04, =0y, O5=053, Og=0p
e = ey, k=123, e, =2ey,, es=2e;3, e5=2e,

where oy; and e;; are the tensor components of the stresses and
small strain components respectively.

It is well known® that the elastic properties of a transversally
isotropic material are defined by five technical constants: Young’s
moduli E and E’, Poisson’s ratios v and v’ and the shear modulus
G'. The elements of the matrix C are expressed in terms of these
constants by the formulae

o e - E(E -Ev?) - E(E'V +Ev'?)
727 y(@+v) 2T T y(I+v)
_ _EEV E*1-v)
Ci3 = €3 = Y’ C33 = —'Y_
E

- = = " _ _ 2
865_2(1+v)’ Y =E(-Vv)-2Ev

Ci5 = C1g = €35 = €6 = C35 = €36 = 0, €44 = €55 = G (1.2)

By averaging theory,® we have

o)
1

2 2 -1
1-vj 1-v; 2
kf——+k,—+—=| ,
[‘ E, E, FE

v —V2 v —V2 2

1 v

V——Ekl 1+k2 2 2'f'—
El

1+v,
El

1+v,
E,

-1
G = [2k1 +2k, } . E = kE, +kE,,

V= kv + kv, kitk, =1 (1.3)

where ki and k; are the concentrations over the section perpen-
dicular to the unit vector e3 of the bearing elements and filler
respectively.

As a result of the transition from the basis €; to the basis €’;, we
obtain the following relations of the generalized Hooke’s law in a
helical system of coordinates
G, =X, Ogp =Xy Oy, =2X; Op =2

Z Z

' 1 1 '
X, = cpe,, +Ccpeggt e, +2c ey, 1 =1,2,3,4

' ' 1 1
O, = 2¢s5€,,+2C566,9, Opg = 2Cs6€,,+ 2Ce5€,9 (1.4)
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_ 2, 2 . 2, 2

= ¢y Cpp = (epte3x)g’, ¢y = (e3+cepx)g’,
2

cyy = (c3—cpp)xg

' 2 47 4

Ccy = [e+2(ci3+cy)x” +c33x 18

' 2 4. 4
Cy3 = [ez+ (e +ey3—dey)x +c;3x g

3, 4
Cyy = [(cz—c  +2c4)x+ (c33—C13—2c44)X" 18

2 47 4
cyy = [c33+2(c13+2c44)x +cyx 18

3. 4
c'34 = [(c33—C13—2¢44) X+ (2c13-2¢1  +cy)x7 )8
X 2 4. 4
Caq = [cgqa—(2c3—cyp—C33+2¢4)x" +cpux 18
' 2, 2 v 2 v 2, 2
Css = (Cap+Co6X)8 5 C56 = (Cag—Co6)X8", Co = (Co+CanX )8
Ces = 2(cyp—cpp)

(1.5)

The strain tensor components in the basis of the helical sys-
tem of coordinates are expressed in terms of displacements by the
following relations

du,

B _ U, 10ug - D
€y = W’ €o0 = €., = DU

Ttraer =T Due

dug 1(0u, ug 10u ou
2e,e = —5;-1-;(-8—9-—7), 2819 = ;—Z+Due, 2e,, = —+ Du

9
00

e

(1.6)

The equations of equilibrium in the stresses in this case have the
form
ao-rr O, —Ogp

49 %00 1
or r r

96,9 O 1904
ar T2 Y o0
a(srz O, lacﬂz

ar "7 troe

ac’9+D<$ =0
ae rz =

+ Doy, = 0

Do, =0
@ (1.7)
Using relations (1.4)—(1.7), we can to obtain a system of differen-

tial equations in the components of the displacement vector u=[u;,

ug, u]T that, together with the conditions of the stress-free side
surface, we will write in the form

N@)u =0; 9, =

z

L(d,)u = 0,

Sl

(1.8)

Seeking the solution in the form u=a(r, 8)exp(i\z), after substitu-
tion into relations (1.8), we obtain the eigenvalue problem on the
cross-section

L(iMa = 0, N(ila = 0 (1.9)

with an infinite set of eigenvalues (EVs), symmetrically positioned
in the complex plane A.

Saint Venant’s solution is defined by three fourfold EVs®>~7 Ay =0,
Af = +7; the remaining EVs are complex. Usually, the complex EVs
are simple, which enables the general solution for a cylinder to be
represented in the form?10

12
u= Y Cu,+YI[Cu(z )+ Culz-LA)];
n=1 k

u(z, Ay) = agexp(ihz) (1.10)

where [ is the length of the cylinder, C, and Cki are arbitrary con-
stants, determined by satisfying the boundary conditions on the
ends of the cylinder z=0, [, u,, are the elementary Saint Venant’s
solutions,”~ A (ImA} > 0) and A, (Im A < 0) are the EVs of the
problem (1.9), and af; and a, are the eigenvectors corresponding to
them.

Half of the elementary Saint Venant’s solutions define the dis-
placement of the cylinder as a rigid body, and the other half
define the stress-strain state (SSS), equivalent in each cross-
section to the longitudinal force and torque (Ao =0), the bending
moments and the transverse forces ()»1i = £1). The SSS correspond-
ing to the second sum in expression (1.10) is self-balanced in
each cross-section of the cylinder and attenuates with distance
from the ends. However, with a weak filler, which is equivalent
to satisfying of the condition m=E;/E; ({1 (as shown by formulae
(1.3), from this condition it follows that E((F’, i.e., the mate-
rial with averaged characteristics possesses strong anisotropy),
there are a finite number of EVs )\ﬁ, the imaginary part of
which tends to zero as m— 0 (we will return to this ques-
tion below when discussing the results of the calculations). The
elementary solutions corresponding to such eigenvalues with
the corresponding boundary conditions on the ends can have a
considerable effect on the internal SSS of the cylinder and its
stiffness.

The presence in the solution of the three-dimensional problem
(1.10) of weakly attenuating elementary solutions leads to viola-
tion of Saint Venant’s principle for cylindrical bodies of composite
materials with a weak filler. Effects of this kind have been investi-
gated mathematically in detail for laminated plates and cylinders
with alternating rigid and soft layers.12 A similar situation occurs
in the three-dimensional solution for a rope, which below will be
considered as the limiting case of the solution described, the elastic
characteristics of which E; =0 and v, =0.

2. Construction of the stiffness matrix of a rope using saint
venant’s solution

Saint-Venant's solutions of the extension-torsion problem are
described by the relations®-7

u, = Cray + Cyay, ug = Cyzr, u, = Cyz (2.1)

G, =8, Ogg =S8 O0,=95; C=35

S, = Ci(Da; +cj3) + Co(Djay + ciy),

D, = c'”a,+r_lc'”; l=1,..4 (2.2)
where 9; is the ordinary derivative with respect to r, and a;=a;(r)
are the solutions of the following boundary-value problems

Za; = F;, ay0) =0, Dlaj|,=a =f;

Z = 3,D,+ 1 (¢l ~ci)d, + r (el ~ chy)

Fy = =0,ci5—r ' (cls—ch)s f1 = —ci3(a)

Fy = —0,(rc\y) —ciy+chy» fo = —aciyla) (2.3)

The constants C; =€ and C, =¢ are determined from the integral
equilibrium conditions

a
2nfo, rdr = d,C, +d,,C, = P,
0

a
2nfo,gr’dr = di,Cy+dpCy = M

z

0 (2.4)
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where P, and M, are the projections of the principal vector and the
principal moment of the stresses acting in the cross-section onto
the axis of the cylinder.

As stated above, the rope will be considered as a cylinder of
composite material described above, the elastic characteristics of
which E; =0 and v, =0. In this case, from relations (1.2) and (1.3)
it follows that only one element of the matrix of moduli C will be
non-zero: ¢33 =E =kyE. Furthermore, v’ =k{v1.

Remark 1. Besides the assumption on the incompressibility of the
material, in an earlier study? it was assumed that G # 0, while from
the third relation of (1.3) it follows that G— 0 when E; — 0.

We will introduce the dimensionless parameter m? =cy; /E’ and
analyse relations (1.2) and (1.5) as m — 0. We have

¢y = En’, ¢y = Ex'gt+om’), oy = Exgt+omd),

Chs E'x“g4 + 0(112)

¢y = Egt+0MmY), ¢y = Exg'+0(Mm%), cy = Exg*+om?)
l} 1 ' ' 2
Cp=c3=Ccy=Cce = 0M)
(2.5)

Note that ¢/, /c}; — v whenm— 0.

We will transform formulae (2.2) taking relations (2.5) into
account, assuming that C; =0 and the strains e;.j = dra; and eqg j = a;/7
are of the order of unity for any r € [0,a], To = at €[0,00) (below, this
assumption will be justified). Under this assumption, with an error
0(m?), we have

2 4
6,, = E[C\(x ey, + 1) + Cy(x’eqq o + rx)]g

Op

. E‘[Cl(x3e99,1 +)C)"'Cz()‘3‘fee,2+”‘2)145'4 (2.6)

To assess g j, we will consider boundary-value problems (2.3).
We will first consider the case when j=1. We will introduce the
dimensionless coordinate p=r/a and transform the equations and
boundary conditions taking relations (2.5) into account. We obtain

Za, = n’(a} +a\/p-1/p°) +qa, = F, (2.7)
a,(0) = 0, al(1) = —Vv/(1+12) (2.8)
Here

2 22
21+M (1-v+vpity)
F1=p’to 3 2.2 , q =~
(1+p71p)

P T+ (24P Tg)
To 2 2.2
(1+p719) (2.9)

When 1 =0, the solution of this problem has the forma; = —v'ap.

For any finite 79 and m — 0, we obtain a singular problem: the
case of adifferential equation with a small parameter for the highest
derivative.

To construct the solution in this case, we will use the asymptotic
method. The solution will be sought in the form
ay = a\+a;; a) = Filg = -1/(pto) (2.10)
where a(]’ is the degenerate solution, which is obtained on the basis
of the inhomogeneous equation (2.7) if we part =0 in it, and a}
is the correcting solution, which is constructed such that solution
(2.10) satisfies boundary conditions (2.7).

The quantity a} is constructed as follows.

We transform the homogeneous equation (2.7) using replace-
ment of the variable, assuming p =m§. We have

1 dzal lda: al 2 1
Zya, = L oy’ Za = 0
04 d§2 EaE §2 n 4,q,

(2.11)

where Z; is the linear operator restricted for all g and p and having
the order of unity with respect to the parameter m. The structure
of Eq. (2.11) enables as when constructing its solution, to apply the
small-parameter method, formally seeking the solution in the form
of a power series in the parameter m. In the zero the approximation
we obtain

1 -1
a; = A|E+ A58 (212)
where A; and A, are arbitrary constants. If we put
A, = —avn/(1+10), A, = 1/(nT2)

then, after changing to the variable p, on the basis of relations (2.10)
and (2.12) we obtain the solution
a, = -vap/(1 +‘I:(2)) (2.13)
which satisfies both boundary conditions (2.8). By a similar method
we obtain

a, = —v10a2p3/(1 +'c(2)) (2.14)

Correspondingly, we have

€go,1 = —V/(1 +1:(2)), €go2 = —v1:0ap2/(1 +'c(2)) (2.15)

The formulae for the stiffnesses d; are obtained by substitut-
ing expressions (2.15) into (2.6), and then into conditions (2.4).
After evaluating of the integrals, assuming To =tg o, we arrive at
the expressions

dy;=nkia""E\D,,, dy, = nk,aE Dy,

1y

Dlj=ijfl_5ij’ j=1,2, D22=i2—si3 (216)
. 2 . 2 4 2 2 2
ip = cos o, i; = —cos otg otg o+ cos o+ Incos o)
. 2 -6 2 4 2 2
i, = cos otg o(2tg o+ tg ot—2cos olncos o)
. 2 -8 2 4 6 2 2
iy = —cos otg o(6tg o+ 3tg ou—tg o+ 6cos alncos o)
.2
§ = vsin o

Remark 2. For steel rope, a = 10-18°. With such values of «, suffi-
cient accuracy is ensured by the following approximate formulae,
stemming from formulae (2.16)

d,, = tk,d’E,[1- (1 +v/2)sin’a]

= mk,a’E, tga[1 - (4/3 +v)sin’a]/2

Q
o
|

dy, = mk,a*E tg’ a1 - (3/2 + 3v/4)sin*o]/3

Remark 3. In some rope constructions, to reduce abrasive wear
by dust getting into the space between fibres, wires with a non-
circular cross-section profile are used. In formulae (2.16), this factor
is taken into account by the parameter k1, which is equal to the ratio
of the combined area of cross-sections of the fibres to the cross-
section area of the rope as a circular cylinder. For wires of circular
cross-section, ki = /4.

To conclude this section, we will give formulae for calculating
the stresses in the case when C; =0 (no twisting of the rope). We
have

2 .2 2 4 . 3
Ggg = PP sin"0lcos ®, G, = pcos &, Gp, = ppsinacos o

.2
p = (1-vp’sin’®)P,/(ra’D,;) (247)
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3. Some certain results of a numerical analysis

In the calculations, two objectives were pursued: to give a
comparative analysis of the values of the stiffnesses of the rope,
calculated by means of formulae (0.2) to (0.4) and (2.16), and to
compare these results with the results attained from the solution of
the three-dimensional problem of elasticity theory for an inhomo-
geneous cylinder of a composite reinforced with helical rigid spirals
with a weak filler. Calculations of the three-dimensional SSS and
stiffnesses were carried out by the finite element method (FEM).
Over the course of the investigation, a numerical analysis was made
of the behaviour of the stiffnesses of a solid cylinder when Young’s
modulus of the filler, E;, tends to zero. In parallel, a similar analy-
sis was conducted by numerical integration of problems (2.3) with
subsequent determination of the stiffnesses dj;.

A two-layer rope with the following parameters was chosen for
the calculation:

number of fibres N=1+6+12=19;

diameter of the rod d, =0.0011 m (in calculations with a filler, it
was this value that was adopted, to avoid bridging of a filler with
zero thickness);

pitch of the helical line h=0.072 m;

Young’s modulus of the bearing elements E; =2 x 10! Pa;
Poisson’s ratios of the bearing elements and filler v{ =v, =0.3;
2a=0.0059 m (note that 2a +# 5dp);

ky = 19d2/(4a%) = 0.66, o= 14.44° = 0.2519 (rad).

As a result of calculations by means of formulae (2.16), the fol-
lowing values were obtained:

dq1 =3.353 x 108 Pa, d1, = 1257 N/m, d2; = 0.6293 N

For comparison, we will give the results of a calculation by
means of (0.2)-(0.4), and also the results for dy; and d;, (Ref. 1):

dq1 =3.384 x 10 Pa (Ref. 3), dq; =3.174 x 108 Pa (Ref. 2)
dy1 =3.475 x 106 Pa, d1; =1092 N/m, do =0.7348 N (Ref. 1)

In accordance with the above, two problems were solved.

Problem 1. Using the finite elements method, the three-
dimensional problem was solved for a solid cylinder of a composite
(without using the averaging method) with the above values of
the parameters for different values of the ratio m=E;/E,, with the
following boundary conditions on the ends

z2=0:u,=uyg=1u,=0;

z2=hu =uy=0, u,=0005m

(31)

The SSS and the rigidities d;; were determined.

Problem 2. By numerical integration of problem (2.7), (2.8), the
SSS of Saint-Venant’s problem and the stiffnesses d;; were calcu-
lated.

The results obtained for dy; are given below:

m 102 103 103 107 0
Problem 1

dy1, 106 Pa 3.349 3.175 1.107 0.341 0.308
Problem 2

dy1, 106 Pa 3.326 3.306 0.774 — —

Remark 4. When solving Problem 1 in the limiting case m=0,
due to of the presence of gaps, there were no contact interactions
between the fibres, while in Saint-Venant’s solution there is interac-
tion, as, according to the first formula of (2.17), 0gg # 0. The absence

of contact between the helical fibres leads, as shown by calcula-
tions, to a considerable reduction in dq;. To take into account the
contact interactions between the fibres within the framework of
the finite-element method, however, it is necessary to solve an
unjustifiably complex problem, although the formulation of such
a problem is not itself ruled out and deserves separate attention.

Remark 5. When m<10~4, in the numerical integration of prob-
lems (2.7), (2.8), stability was lost on account of the smallness of
the parameter mZ = O(m).

From calculations based on the finite-element method with
m=0 it follows that the strain is periodic in nature, with a period
equal to the pitch of the helical spirals. In Saint Venant’s solution,
the pattern of the strain state remains constant in all cross-sections
and the rope retains its cylindrical shape.

Certain considerations concerning this qualitative discrepancy
in the strain pattern of the rope can be stated.

In constructing the finite-element method solution, the
boundary-value problem with rigid fixing at both ends of the rope
was solved, one end remaining stationary and the second being
moved forwards along its axis. However, Saint Venant’s solution
with z=0 satisfies only one of the three conditions in (3.1), namely
u, =0, and the radial displacement u, =Cya;(r) + Caay(r)#0, where
the a;(r) are determined by the solutions of boundary-value prob-
lems (2.3). For normal cylindrical rods, this difference in boundary
conditions when determining the SSS far from the ends is of no
fundamental importance, as the SSSs arising at the ends are stati-
cally equivalent by virtue of Saint Venant’s principle. For a rope, as
noted above, in the case of Problem 1, Saint Venant’s principle is
not satisfied by virtue of the absence of internal bonds between the
individual fibres. The absence of such bonds for a helical fibre not
coinciding with the axial fibre of the rope, with forward movement
of its ends parallel to the axis of the rope, leads to the emergence,
apart from the tensile force, of a bending moment and a shearing
force. It can be shown that the strain corresponding to the bend-
ing moment and shearing force is proportional to cos 7z and sin Tz
(T=2m/h) respectively, which corresponds to the pattern obtained
using the finite-element method. Here, the overall bending
moment and shearing force in the cros-section of the rope are zero.

Thus, calculations of the stiffness dq; for a steel rope by means
of formula (0.4), obtained by methods of structural mechanics, and
by means of formula (2.16), obtained by methods of the theory of
composites using Saint Venant's solution, give similar results, dif-
fering in the 3% range. For the remaining stiffnesses, the difference
in the calculations reaches 20%.

Numerical analysis of the problem using the finite-element
method showed that the stiffness of the rope depends considerably
on the contact interactions between the individual fibres. From this
it follows that any variation in contact interaction over the length
(for example, the back of contact between the individual fibres on
certain sections as a result of assembly or operating conditions) can
cause longitudinal inhomogeneity of its structure, which, in turn,
leads to a concentration of stresses due to bending of individual
fibres and can cause failure. A possible reason for delamination of
the rope is the “untwisting” effect, the magnitude of which, besides
technological factors, depends on the value of the stiffness di,. To
reduce this effect, double-weave rope is used.

A general analysis indicates that the SSS of a rope depends con-
siderably on the method used to fasten its ends.
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